Music of the Periodic Table

Hydrogen Spectrum

Explanation of the Process of Finding Light and Sound Resonance

The purpose of this project is to retune the music that we make to be resonant with the physical world. In ancient times there was an intuitive sense of the world as people intoned their words and prayers. Moving through history, first in China and then in Greece, certain mathematical relationships were discovered. These were related to the fractional proportions of a string on a monochord. Please see the article by Philip Stewart. (This is a technical overview of how our 12 tone scale developed and finding the perfect tonal relationships.)

The very beginning part of this project is to examine each element and find their inherent tones. The next is to examine how these tones relate to the current organization of the elements that make up our world. As the calculations are expanded, I will begin to construct a tonal framework from which not only individual element scales can be constructed, but also a division between the octaves and an identification of the relationships. Questions that remain to be answered are: if the tonal sequence is in a quarter tone scale or even perhaps an eighth tone scale; are there elements that are octaves of each other; and how do these tones and their relationships relate to the qualities of the elements as reflected in the periodic table.

The goal is to create healing music for our time. Many individuals recognize the relationships between tone, light and health. This work will bring a finer resolution into healing work and perhaps into our social realm.

Everything is in a state of movement and vibration. Light and sound are in a continuum of vibration. Here is a chart showing the range in Hertz (Hz) for measurable vibrations.


Within these frequencies there is also the wavelength. Another way to quantify vibration is to use the wavelength. This is often measured in Ångstroms which is 10 -10 meters, or in Nanometers, which is 10 -9 meters. Here is a chart of the electro-magnetic spectrum. Note that sound is not included in this chart as sound is considered differently.



Follow the links above to the original graphics.

Frequency can be converted from wavelength by using the following equation:

f =  c /l  where f is frequency in Hertz (Hz) , c is the speed of light in meters/second and l is wavelength in meters. The latter is usually converted from Ångstroms or nanometers (nm) to meters for calculation purposes.

Light, measured in Angstroms, has a very high measure in Hz. (trillions of Hz per second). Using the laws of harmonics one can continually divide by 2 to reduce the very high values to those that can be heard by us. With sound, every time a frequency is divided by 2 you get to the same tone one octave lower and if you double the frequency you get one octave higher. The basic auditory range is between 20 Hz and 20,000 Hz.

As can be seen from the above charts, the range of visible light is very small and the auditory range is also only a small portion of the entire spectrum.

Where the Colors and Tones Come From

In the field of spectrometry, every element has a specific set of colors that are emitted when observed. If you take an element and bring it to a higher energy state and then observe it as it returns to a resting state, there is always the same set of wavelengths emitted. At certain energy states the wavelengths are in the visible spectrum. The colors and tones presented are from the major emission spectrum.


  1. Jim Jones on February 10, 2018 at 11:37 pm

    Look up cymatics too FYI if that peaked your interest. Props to the author of this article: light,sound, & color (and ultimatley matter) are simply waves & frequencies. Tesla will probably be the one who proves Enstien wrong & takes the crown in the near future (along with String Theorists).

    At the right wave & frequency there are untold ways physics can be completely changed. Look it up yourself. Science has only Delta 5’d very few and small examples of it; but the future says it won’t be long before controlling matter in very direct way will be possible.

  2. Jack Smith on April 11, 2019 at 12:27 am

    A while back I attempted to relate music and color more directly, but it’s a shame our eyes didn’t develop to see EM radiation in ‘octaves’, or at least one complete ‘octave’. If that was the case we could relate specific pantones to pitches completely and simply. Maybe some future science will allow us to enhance our eyes and minds to experience it.

Leave a Comment